Online Accelerated Gradient Descent and Variational Regret Bounds
نویسنده
چکیده
In this note, we study Nesterov’s accelerated gradient descent method in an online setting and establish both variational static and dynamic regret bounds using the functional variation, which “match” previous regret bounds in terms of gradient variation. To the best of our knowledge, this is the first work to study Nesterov’s accelerated gradient method in an online setting and our regret bounds are better than previous variational regret bounds in terms of functional variation.
منابع مشابه
Regret bounds for Non Convex Quadratic Losses Online Learning over Reproducing Kernel Hilbert Spaces
We present several online algorithms with dimension-free regret bounds for general nonconvex quadratic losses by viewing them as functions in Reproducing Hilbert Kernel Spaces. In our work we adapt the Online Gradient Descent, Follow the Regularized Leader and the Conditional Gradient method meta algorithms for RKHS spaces and provide regret bounds in this setting. By analyzing them as algorith...
متن کاملLess Regret via Online Conditioning
We analyze and evaluate an online gradient descent algorithm with adaptive per-coordinate adjustment of learning rates. Our algorithm can be thought of as an online version of batch gradient descent with a diagonal preconditioner. This approach leads to regret bounds that are stronger than those of standard online gradient descent for general online convex optimization problems. Experimentally,...
متن کاملAnalysis Techniques for Adaptive Online Learning
We present tools for the analysis of Follow-The-Regularized-Leader (FTRL), Dual Averaging, and Mirror Descent algorithms when the regularizer (equivalently, proxfunction or learning rate schedule) is chosen adaptively based on the data. Adaptivity can be used to prove regret bounds that hold on every round, and also allows for data-dependent regret bounds as in AdaGrad-style algorithms (e.g., O...
متن کاملVariants of RMSProp and Adagrad with Logarithmic Regret Bounds
Adaptive gradient methods have become recently very popular, in particular as they have been shown to be useful in the training of deep neural networks. In this paper we have analyzed RMSProp, originally proposed for the training of deep neural networks, in the context of online convex optimization and show √ T -type regret bounds. Moreover, we propose two variants SC-Adagrad and SC-RMSProp for...
متن کاملA survey of Algorithms and Analysis for Adaptive Online Learning
We present tools for the analysis of Follow-The-Regularized-Leader (FTRL), Dual Averaging, and Mirror Descent algorithms when the regularizer (equivalently, proxfunction or learning rate schedule) is chosen adaptively based on the data. Adaptivity can be used to prove regret bounds that hold on every round, and also allows for data-dependent regret bounds as in AdaGrad-style algorithms (e.g., O...
متن کامل